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Lumen degradation is a common failure mode in LED light sources. Lumen maintenance life, defined as
the time when the maintained percentages of the initial light output fall below a failure threshold, is a
key characteristic for assessing the reliability of LED light sources. Owing to the long lifetime and high
reliability of LED lights sources, it is challenging to estimate the lumen maintenance life for LED light
sources using traditional life testing that records failure data. This paper describes a particle filter-based
(PF-based) prognostic approach based on both Sequential Monte Carlo (SMC) and Bayesian techniques to
predict the lumen maintenance life of LED light sources. The lumen maintenance degradation data
collected from an accelerated degradation test was used to demonstrate the prediction algorithm and
methodology of the proposed PF approach. Its feasibility and prediction accuracy were then validated
and compared with the TM-21 standard method that was created by the Illuminating Engineering Society
of North America (IESNA). Finally, a robustness study was also conducted to analyze the initialization of
parameters impacting the prediction accuracy and the uncertainties of the proposed PF method. The
results show that, compared to the TM-21 method, the PF approach achieves better prediction
performance, with an error of less than 5% in predicting the long-term lumen maintenance life of LED
light sources.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Light-emitting diodes (LEDs) are widely used as a next genera-
tion light source including indoor lighting, street lamps, advertising
displays, decorative lighting, and monitor backlights (Schubert &
Kim, 2005). Compared to traditional light sources (such as incandes-
cent lamps, halogen incandescent lamps, and cold cathode fluores-
cent lamps), LED light sources have attracted interest due to their
high efficiency, environmental benefits, high reliability, and long
lifetime, with claims of 50,000 h or longer (Haitz & Tsao, 2011;
Lafont, van Zeijl, & van der Zwaag, 2012; Tarashioon et al., 2012).
However, owing to the long lifetime and high reliability, few or
any failures should occur in LED light sources during a short-term
life test, even in an accelerated life test (Challa, Rundle, & Pecht,
2013; Chang, Das, Varde, & Pecht, 2012). Thus, it is time-consuming
and expensive for LED developers to estimate the life for LEDs using
traditional destructive life testing, which records failure data. There-
fore, the capability to explore an expert system by conducting short-
term and cost-effective qualification tests to predict long-term
remaining useful life (RUL) is a critical economic and business
requirement to new LED adoption, and it is the motivation of this
research topic.

Apart from the traditional destructive life test, predicting RUL
with a degradation test appears to be an attractive alternative for
qualifying highly reliable products, bringing benefits by shortening
the testing time, identifying the degradation path, and providing
effective maintenance methods before failures occur (Hua et al.,
2012; Lu & Meeker, 1993; Si, Wang, Hu, & Zhou, 2011). When
applied to LEDs, many previous RUL prediction methods based on
degradation data rely on the least-squares regression (LSR)
approach. For instance, the IESNA released the TM-21 standard
(IES-TM-21-11, 2011) in 2011 to predict the lumen maintenance
life for LED light sources based on the collected lumen maintenance
data from the IES LM-80-08 test report (IES-LM-80-08, 2008). In the
TM-21 standard, the LSR method is used to estimate the parameters
involved in the lumen degradation model, and the degradation

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.10.021&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.10.021
mailto:jay.fan@connect.polyu.hk
mailto:wincokc.yung@polyu.edu.hk
mailto:wincokc.yung@polyu.edu.hk
mailto:pecht@calce.umd.edu
http://dx.doi.org/10.1016/j.eswa.2014.10.021
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


2412 J. Fan et al. / Expert Systems with Applications 42 (2015) 2411–2420
curve is then projected to the failure threshold to get the lumen
maintenance life. Currently, many LED manufacturers have
accepted the TM-21 standard to predict the lifetime for their LED
products (such as Philips Lumileds (LUXEON, 2011) and CREE
(CREE, 2012)). Additionally, our previous work (Fan, Yung, &
Pecht, 2012) proposed a degradation data-driven method to esti-
mate the lumen lifetime of high power white LEDs wherein the
parameters of the lumen degradation model were estimated by
using an ordinary LSR fitting method. Zhang et al. applied statistical
distribution functions (such as a lognormal function (Zhang et al.,
2012) and the Weibull function (Zhang et al., 2014)) to describe
the relationship between OLED’s lumen degradation and time,
and the parameters of both statistical functions were calculated
with the least-squares method. Wang and Lu (Wang & Lu, 2014)
presented a bi-exponential model to fit the lumen degradation data
for LEDs, and the model parameters were also estimated by the
nonlinear LSR. However, previous studies (Fan, Yung, & Pecht,
2014a; Fan, Yung, & Pecht, 2014b; Fan et al., 2012) have shown that
using the LSR method to estimate parameters for the lumen degra-
dation curve has many weaknesses in terms of guaranteeing predic-
tion accuracy, because it does not consider the measurement
dynamics and uncertainties. This can result in a large gap between
the product lifetime estimated by LED manufacturers and the actual
application life.

To improve the accuracy of lifetime prediction, this paper pro-
poses a dynamic recursive particle filter-based (PF-based) approach
to model the lumen degradation data of LED light sources by taking
measurement dynamics and uncertainties into consideration. As a
nonlinear filtering approach, the PF prognostic approach has been
widely used in state estimation and prediction for nonlinear/non-
Gaussian systems (Arulampalam, Maskell, Gordon, & Clapp, 2002;
Miao, Xie, Cui, Liang, & Pecht, 2013; Xing, Ma, Tsui, & Pecht, 2013).
Normally, PF uses a set of weighted particles simulated by the
Sequential Monte Carlo (SMC) method (Caesarendra, Niu, & Yang,
2010) to approximate the state as a posterior probability density
distribution and then dynamically update it and predict the future
state with measurement data within a Bayesian framework (Chen
et al., 2012; Orchard & Vachtsevanos, 2009; Zhao & Li, 2010).

This paper focuses on modeling the dynamic nonlinear lumen
degradation process of LED light sources in an accelerated degrada-
tion test with considering the measurement uncertainties. Firstly,
we selected the exponential degradation model recommended in
the TM-21 standard to describe the lumen degradation process of
LED light sources. The PF method, which replaces the LSR method
used in the TM-21 standard, was then used to track the lumen deg-
radation process by estimating and adjusting the model parameters
from updated measurements. Finally, when the measurements ter-
minated, the RULs with prediction confidence intervals were pre-
dicted by extrapolating the updated model with measurement
noise to the failure threshold. The main contributions of this paper
are as follows: (i) a recursive solution of PF, replacing the batch pro-
cessing of LSR, is first proposed to deal with lumen degradation data
of LED light sources and estimate the parameters of the lumen deg-
radation model dynamically; (ii) with consideration of measure-
ment uncertainties, an SMC method is employed in the PF to
predict RUL as a life distribution with a confidence interval; (iii) a
robustness study is conducted to analyze the initialization of
parameters impacting the prediction accuracy and the uncertainties
of the proposed PF method.

The remainder of this paper is organized as follows: Section 2
presents the methodologies and algorithms for lumen maintenance
life prediction, including the TM-21 projecting method and our pro-
posed PF prognostic approach. Section 3 introduces the device used
in our test and the design of the accelerated degradation test
programme. Section 4 implements the proposed PF method in
RUL estimation based on the collected lumen maintenance degrada-
tion data and provides results and discussion on the prediction
accuracy, uncertainty, and robustness. Finally, concluding remarks
and possible directions for future work are presented in Section 5.

2. Methodologies and algorithms

In this section, the methodologies and algorithms of both the
TM-21 standard method and the proposed PF prognostic approach
are introduced to predict the lumen maintenance life of LED light
sources.

2.1. TM-21 projecting method

Lumen degradation, which refers to the decrease in light output
during the aging process, is recognized as a critical failure mode in
LED light sources (Narendran & Gu, 2005). In the lumen degradation
process, the lumen maintenance (LM) of LED light sources is defined
as the maintained percentage of the initial light output. According to
different applications, the Alliance for Solid-State Illumination Sys-
tems and Technologies (ASSIST) uses lumen maintenance to define
the lumen maintenance lifetimes of LED light sources. For example,
L50 for decorative lighting means the time at 50% lumen mainte-
nance, and L70 for general lighting means the time at 70% lumen
maintenance (Assist recommendation, 2005).

The TM-21 method is a lumen maintenance life prediction stan-
dard published by the IESNA in 2011 (IES-TM-21-11, 2011). It is
used to determine the operating lifetime of LED light sources based
on the lumen maintenance data collected from the IES LM-80-08
test report. The main procedure of the TM-21 method is imple-
mented as follows:

(i) Normalize the collected luminous flux data as lumen main-
tenance data. Luminous flux data is used to represent the
optical performance of LED light sources. Luminous flux data
is normalized as lumen maintenance data to determine
when the failure occurs. Lumen maintenance can be defined
as the maintained percentage of the initial luminous flux
over time:
LMðtÞ ¼ UðtÞ
Uð0Þ � 100% ð1Þ

where U(0) is the initial luminous flux, and U(t) is the lumi-
nous flux at time t.
(ii) Curve-fit the lumen maintenance data with the LSR method.
The exponential expression, as shown in Eq. (2), is well pro-
ven and is a widely used model to describe the lumen deg-
radation path of LED light sources. Therefore, exponential
curve-fitting is applied to the collected lumen maintenance
degradation data, and the model parameters are estimated
by the LSR (Eq. (3)):
LMðtÞ ¼ B � expð�a � tÞ ð2Þ

min
B;a

1
m

Xm

i

½yi � LMðti; B;aÞ�½yi � LMðti; B;aÞ�T
( )

ð3Þ

where B is the initial constant and a is the degradation rate
constant, both of which are derived by the least-squares
curve-fitting; and m is the number of collected lumen main-
tenance degradation data points for each test sample.
(iii) Project the lumen maintenance life, Lp. As introduced in
Section 1, the LED lumen maintenance life is defined as the
time when the lumen maintenance data decreases below
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the failure threshold (LMthreshold = 70% is defined for LED light
sources used as general lighting). Thus, Lp can be predicted
by projecting the degradation model with the estimated
model parameters to the defined failure threshold:
Lp ¼ ln
100� B

p

� ��
a ð4Þ

where p is the maintained percentage of the initial luminous
flux (p = 70 is used in this paper).
2.2. PF prognostic approach

PF is widely known as a state estimation and prognostic
approach for nonlinear/non-Gaussian systems. It integrates
Sequential Monte Carlo computation with Bayesian estimation
(Orchard & Vachtsevanos, 2009; Zio & Peloni, 2011). Usually, most
dynamic processes of systems can be described by a state-space
model, with both state and measurement (or observation) models
(Eqs. (5) and (6)). Differing from other nonlinear filtering
approaches (Fan et al., 2014b), PF simulates a set of particles with
the Sequential Monte Carlo technique to approximate the system
state at the kth cycle as a probability density function (PDF),
xk � p(xk|z1:k):

State model : xk ¼ f ðxk�1; vk�1Þ ð5Þ
Measurement model : zk ¼ hðxk;xkÞ ð6Þ

where f(�) and h(�) are the nonlinear state and measurement func-
tions; xk and zk are the state and measurement; and vk and xk

donate the white noise of the state and measurement, respectively.
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Fig. 1. Flowchart of implementation of PF prognostic approach.
The procedure for predicting the lumen maintenance life with
the proposed PF prognostic approach can be separated into six
steps (see Fig. 1): (i) model definition; (ii) parameter initialization;
(iii) parameter sampling and prediction; (iv) dynamic update with
the Bayesian algorithm; (v) particle weighting and resampling; and
(vi) RUL prediction.

2.2.1. Model definition
The state model used in this section is derived from the lumen

degradation exponential model used in the TM-21 standard (Eq.
(2)). For simplicity, the initial constant B is assumed to be 1. The
state noise vk can be integrated into the uncertainty of the degra-
dation model parameters (An, Choi, & Kim, 2013). The measure-
ment model helps in mapping the actual states with the
measured lumen maintenance data and measurement noise.

State model : xk ¼ exp½�akðtk � tk�1Þ�xk�1 ð7Þ
Measurement model : zk ¼ xk þxk xk � Nð0; d2Þ ð8Þ
2.2.2. Parameter initialization
As shown in Eqs. (7) and (8), the parameter vectors for both the

state and measurement models can be expressed as h, and each
parameter will be initialized by assuming a distribution drawn
by the Monte Carlo simulation, with N particles.

hi
0 ¼

xi
0 � pðx0Þ

ai
0 � pða0Þ

di
0 � pðd0Þ

2
64

3
75 where i ¼ 1;2; . . . ;N ð9Þ
2.2.3. Parameter sampling and prediction
Before receiving knowledge of the measurement zk, given a

posterior probability density function at the k � 1th cycle as
p(hk�1|z1:k�1), the prior probability density function of the parameter
vector at the kth cycle, p(hk|z1:k�1), can be calculated based on the
state model with the Chapman–Kolmogorov equation:

pðhkjz1:k�1Þ ¼
Z

pðhkjhk�1Þpðhk�1jz1:k�1Þdhk�1 ð10Þ

where p(hk�1|hk) is the transition probability distribution defined by
the state model (Eq. (7)).

2.2.4. Dynamic update with the Bayesian algorithm
As shown in Eq. (11), with the new input measurement, zk, the

posterior probability density function at the kth cycle, p(hk|z1:k),
can be updated by using the Bayesian algorithm and the Markov
assumption:

pðhkjz1:kÞ ¼
pðzkjhk; z1:k�1Þpðhkjz1:k�1Þ

pðzkjz1:k�1Þ

¼ pðzkjhkÞpðhkjz1:k�1ÞR
pðzkjhkÞpðhkjz1:k�1Þdhk

ð11Þ

where p(zk|hk) is the likelihood function of the measurement model.
Since the measurement noise, xk, follows a Gaussian distribution,
the likelihood function of the ith particle at cycle k, p(zk|hi

k), can
be formulated as follows:

p zkjhðx; b; dÞik
� �

¼ 1ffiffiffiffiffiffiffi
2p
p

di
k

exp �1
2

zk � xi
kðb

i
kÞ

di
k

 !2
2
4

3
5 ð12Þ
2.2.5. Particle weighting and resampling
Based on the likelihood function of the measurement zk at the

kth cycle, the ith particle can be weighted as shown in Eq. (13)
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(Zio & Peloni, 2011). The particle weight is proportional to the PDF
value of the likelihood function.

Wi
k ¼

p zkjhi
k

� �
PN

j p zkjhj
k

� � ð13Þ

To avoid the degeneracy problem in the iteration process (Li, Sun,
Sattar, & Corchado, 2014; Orchard & Vachtsevanos, 2009), resam-
pling is always used to eliminate low-weight particles and condense
high-weight particles. In this paper, the inverse cumulative density
function (CDF) method, based on the likelihood function, is used to
resample particles (An et al., 2013; Zio & Peloni, 2011).

As illustrated in Fig. 2. Firstly, the CDF of the likelihood function
is established based on Eq. (12). Next the uniform distributed ran-
dom values are assumed as the CDF values, for instance, U(0,1).
Then a particle with the CDF value can be found for the parameter
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Fig. 4. Device under test: (a) schematic of L
distribution. Finally, by repeating n times, the resampled n parti-
cles, with the calculated CDF values, are selected as the posterior
probability density function at the kth cycle, p(hk|z1:k).

Next, if k 6 p (where tp is the prediction time when the measure-
ment is terminated), let k = k + 1, set the posterior p(hk|z1:k) at the kth
cycle as the prior distribution at the k + 1th cycle, and repeat steps
(iii) to (v) until the measurement is terminated (see Fig. 3).

2.2.6. RUL prediction
As shown in Fig. 3, when the measurement is terminated at the

pth cycle, the parameter vector finishes the updating as hp, and
the future lumen maintenance can be predicted by extrapolating
the state model based on the estimated degradation parameter
and measurement noise (ap and dp). The time when the predicted
lumen maintenance reaches the failure thresholds defined by
ASSIST (LMthreshold = 70%) is the time to failure, tf. The RULs can then
be obtained by calculating the distance between the time to failure
and the time at the pth cycle.

3. Device under test and experimental design

The device under test (DUT) selected in this study is a type of
high brightness phosphor-converted white LED light source with
an InGaN chip from Avago (Type: 3 W Mini Power White LED
(ASMT-JN31-NTV01)) (ASMT-Jx3x, 2012). The packaging structure
of the test vehicle is shown in Fig. 4(a), and indicates that the
mechanism for generating white light from the test vehicle is a
combination of blue light emitted by an InGaN chip (Fig. 4(b))
and excited yellow light emission from a phosphor layer. The basic
optical characteristics of DUT at the recommended test conditions
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Fig. 5. Operation profile of accelerated degradation test for LED light sources.

J. Fan et al. / Expert Systems with Applications 42 (2015) 2411–2420 2415
(drive current, Ic = 350 mA; forward voltage, VF = 3.2 volts; and
junction temperature, TJ = 25 �C) are listed as follows: (i) luminous
flux is around 85 lm; (ii) correlated color temperature, CCT, is
3500–4500 K with neutral white color; and (iii) luminous effi-
ciency is 76 lm/W.

An accelerated degradation test under a high temperature con-
dition was designed in this study for the selected LED light sources.
The DUTs soldered on a metal core printed circuit board (MCPCB)
test board were electrically driven by the same DC current
(Ic = 200 mA) provided by a DC power supply (Agilent E3611A).
The thermal chamber provided a constant aging temperature
(Ta = 90 �C). The experimental procedure of this accelerated degra-
dation test included three steps: (i) aging; (ii) cooling; and (iii)
testing. As shown in the operation profile (Fig. 5), after 23 h of high
temperature thermal aging, the DUTs were removed from the ther-
mal chamber to be cooled to ambient temperature for testing. In
the testing step, the luminous flux of DUTs was measured by a
Gigahertz-Optik BTS256-LED tester. When the lumen flux data
were collected and transformed to the lumen maintenance, the test
board was returned to the thermal chamber to undergo the next
round of aging. After 1518 h of aging (66 cycles of operation), nine
DUTs failed, with the lumen maintenance dropping below the
threshold of 70%.

4. Implementation results and discussion

The lumen maintenance degradation data of selected LED light
sources were collected from the accelerated degradation test, and
they were used to demonstrate the prediction algorithm and meth-
odology of the proposed PF prognostic method and to validate its
feasibility, accuracy, and robustness. Following the methodology
implementation steps introduced in Section 2.2, the validation pro-
cess of the PF prognostic method can be separated into three major
steps: (i) method training; (ii) method testing; and (iii) robustness
study.

4.1. Method-training

Normally, method training is a step to initialize the parameter
vector of the selected state-space model with the historical data-
base. However, for new products without historical records, either
a calibration test (Fan et al., 2014a, 2014b) or an assumption (Xing,
Ma, Tsui, & Pecht, 2012) is always required for initializing the
parameters. In this study, we selected five out of nine DUTs as
training samples to collect initialization information for testing.
As shown in Fig. 6, the lumen maintenance degradation data of
these five training samples were exponentially curve-fitted with
the lumen degradation model, and the model parameters were
estimated by means of the nonlinear least-squares regression
approach. According to the curve-fitting results of the training
samples listed in Table 1, the standard deviation (SD) of the mea-
surement noise was represented by the standard deviation of the
curve-fitting residuals, and the estimated parameters from the
training samples were averaged to initialize the parameter vector.
The initial distributions of the parameters defined in Eq. (9) were
assumed to be uniform distributions, which were represented as
follows:

hi
0 ¼

xi
0 � Uð0:9;1:1Þ

ai
0 � U 1:8 � 10�4;2:2 � 10�4

� �
di

0 � Uð0:01;0:02Þ

2
664

3
775
4.2. Method testing

In method testing, the remaining four DUTs were chosen as test
samples to validate the feasibility and accuracy of the proposed PF
prognostic approach. The lumen maintenance life prediction
results of the four test samples based on both the PF prognostic
approach and TM-21 standard method are shown in Fig. 7. The pre-
diction time was chosen to be 690 h (30 cycles, approximately 45%
of the full lifetime profile of DUTs). The results in Fig. 7 show that
the median lumen maintenance lives of the four test samples pre-
dicted by the PF approach were close to the actual lifetimes, with a
prediction error of less than 5%, while the prediction errors using
the TM-21 method were larger than 10%.

As introduced in the PF methodology and algorithm, the initial
distributions of the parameters of both the state and measurement
models were first simulated by Monte Carlo simulation with N par-
ticles. Based on the Bayesian estimation, the periodical measure-
ment data from 0 to 690 h were used to recursively update and
adjust the parameter vector via the likelihood function. After
690 h, the lumen maintenance values of the test samples were esti-
mated by extrapolating the updated degradation model with the
measurement noise. When the estimated lumen maintenance
reached the failure threshold (LMthreshold = 70%), the lumen mainte-
nance life could be predicted. Table 2 compares the theoretical dif-
ferences between the proposed PF approach and the TM-21
standard in LED life prediction. The PF approach estimates and
updates the parameter vector dynamically by absorbing new mea-
surements with considering the measurement noise. Thus, the PF
approach can take measurement dynamics and uncertainties into
consideration. While, as shown in Eq. (3), the LSR used in the
TM-21 method only depends on the minimization of the sum of
the residuals between the actual measurements and the calculated
values by using batch processing.

Fig. 8 shows the RUL prediction results at different prediction
times for both the PF approach and the TM-21 method. In addition
to 690 h, some other prediction times, such as 960 h (40 cycles,
approximately 63% of the full lifetime profile), 1150 h (50 cycles,
approximately 76% of the full lifetime profile), and 1380 h (60
cycles, approximately 91% of the full lifetime profile) were also
designed in this study. Compared to the TM-21 method, the pre-
dicted median RULs from different prediction times predicted by
the PF approach were closer to the actual RULs, especially at lower
prediction times (such as 690 h with the long-term prediction dis-
tance). This indicates that the accuracy of the PF approach is better
than the TM-21 method in predicting long-term lumen mainte-
nance life for LED light sources.

With increasing prediction times, the accuracy of the RUL pre-
diction by the TM-21 method improved, because the LSR method
can track the real lumen maintenance degradation trajectory of
LED light sources by dealing with sufficient measurement data.
However, the TM-21 method requires a longer test time to predict
the lifetime than the PF approach. A comparison of the prediction
performances of the PF approach and the TM-21 method is given
in Table 3. Among all test samples, the prediction errors of the PF
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Fig. 6. Curve-fitting for full lifetime data of training samples.

Table 1
Parameter initialization with training samples.

Training samples B a * 10�4 Adjust R2 SD of curve-fitting residuals

Training LED_1 0.95150 1.97 0.96900 0.012848
Training LED_2 0.93771 2.07 0.95757 0.015493
Training LED_3 0.96248 2.02 0.96739 0.013598
Training LED_4 0.96359 2.04 0.96059 0.015175
Training LED_5 0.97680 2.13 0.98285 0.010460
Averaged values 0.95842 2.05 0.96748 0.013515
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Fig. 7. Lumen maintenance life prediction: PF prognostic approach vs. TM-21 method.

Table 2
Theoretical comparison of LED life prediction methods (the proposed PF approach vs.
TM-21 standard).

TM-21 standard with least-
squares regression

Proposed PF prognostic approach with
sequential Monte Carlo simulation

1. Batch least-squares on
finite data span

1. Recursive solution on unlimited data span

2. Periodic execution 2. Real-time processing suitable for online
prediction

3. Deterministic model 3. Stochastic model with consideration of
measurement dynamics and uncertainties

4. Solution for both linear
and nonlinear processes

4. Solution for nonlinear/non-Gaussian
problems

5. No requirement of prior
information

5. Requires prior estimation (or initial
assumptions)
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approach can be controlled within 7% for all prediction times
(under 5% when applied to long-term prediction). The widths of
the prediction confidence intervals (90% C.I.) become narrower
with increasing measurement time, which means the prediction
uncertainties are reduced.
4.3. Robustness study

Referring to previous studies (Fan et al., 2014a, 2014b; Xing
et al., 2012), the prognostic performances of filtering techniques
are always related to the selection of the initial parameters. Thus,
the effect of parameter initialization was studied to validate the
robustness of the proposed PF prognostic approach in actual appli-
cations. As introduced in Section 2.2, the degradation rate of the
lumen maintenance degradation model a and the standard devia-
tion of the measurement noise d are two critical parameters to
determine the lumen degradation trajectory and the state updating
process in the implementation of the PF approach. Except for the
full lifetime training test (1518 h) used in Section 4.1, the assump-
tions of the initial distribution for the degradation rate were based
on the curve-fitting results from some other calibration tests for
training samples, which included a 91% of full lifetime test
(1380 h); a 76% of full lifetime test (1150 h); a 63% of full lifetime
test (920 h); and a 45% of full lifetime test (690 h). The initial dis-
tributions of the two parameters were also assumed to be uniform
distributions, as listed in Table 4.

Based on the assumed initial parameter vectors listed in Table 4,
the prediction results for lumen maintenance life obtained by the
PF prognostic approach are shown in Fig. 9. Among all four test
samples, the prediction errors of the PF approach from a shorter
term calibration test are larger than those from tests with a longer
calibration time. The widths of the prediction confidence intervals
mainly depend on the assumptions for the measurement noise. As
shown in the time listed beside the prediction error in Fig. 9, with
increases in the standard deviation of measurement noise, the
widths of the prediction confidence intervals in the lumen mainte-
nance life prediction by the PF approach increased, indicating that
the prediction uncertainties were raised.
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Fig. 8. Remaining useful life prediction: PF prognostic approach vs. TM-21 method.

Table 3
Comparison of prediction results: PF prognostic approach vs. TM-21 method.

Test samples Prediction time (h) Prediction error of LM life %

TM-21 PF (the widths of 90% C.I.)

Test LED_1 690 11.52 1.52(312 h)
920 8.38 1.52(299 h)
1150 7.32 1.52(299 h)
1380 �1.66 1.52(253 h)

Test LED_2 690 22.12 4.55(391 h)
920 18.73 6.06(414 h)
1150 13.29 6.06(391 h)
1380 8.94 4.55(253 h)

Test LED_3 690 18.03 4.55(368 h)
920 13.06 4.55(391 h)
1150 10.32 1.52(299 h)
1380 2.95 1.52(230 h)

Test LED_4 690 11.03 0.00(391 h)
920 8.19 1.56(345 h)
1150 5.01 0.00(368 h)
1380 �0.80 �1.56(276 h)
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5. Conclusions

Lumen maintenance life is a key characteristic for assessing the
reliability of LED light sources. Owing to the long lifetime and high
reliability of LED light sources, estimating the lumen maintenance
life by using traditional destructive life testing methods is
time-consuming and expensive. Even the IESNA TM-21 standard,
which is widely accepted by many LED manufacturers, has weak-
nesses in terms of guaranteeing life prediction accuracy, because
it relies on the LSR method without considering measurement
dynamics and uncertainties. In order to improve the accuracy of
long-term lumen maintenance life prediction for LED light sources



Table 4
The assumption of parameter initialization for robustness study.

No. Initial distribution assumption for degradation rate, a * 10�4 No. Initial distribution assumption for SD of measurement noise, d

1 U(1.8,2.2)assumed from full lifetime training data 1 U(0,0.01)
2 U(1.9,2.3)assumed from 1380 h training data 2 U(0.01,0.02)
3 U(2.0,2.4)assumed from 1150 h training data 3 U(0.02,0.03)
4 U(2.1,2.5)assumed from 920 h training data

5 U(2.2,2.6)assumed from 690 h training data
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Fig. 9. Robustness study of PF prognostic approach (LM life prediction error with the width of 90% C.I. in brackets).
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and shorten the qualification test time, we developed a PF-based
prognostic approach to replace the LSR method applied in TM-21
standard. Our PF-based prognostic approach dynamically
estimates and adjusts the lumen degradation model parameters
by absorbing new measurements with consideration of the mea-
surement noise. Theoretically, there are at least two advantages
of the PF approach in RUL prediction. Firstly, the PF approach deliv-
ers a recursive and stochastic parameter estimation by dynami-
cally updating measurements, while the LSR used in the TM-21
standard conducts batch-processing estimation by minimizing
the sum of the residuals between the actual measurements and
the calculated values. Secondly, the SMC simulation in PF can
predict a RUL distribution with a confidence interval by taking
measurement uncertainties into consideration, whereas the
TM-21 standard can only extrapolate the estimated curve to a
deterministic lifetime.

Our results show that the PF approach possesses higher predic-
tion accuracy (with an error of less than 5%) than the TM-21
method when applied for long-term lumen maintenance life pre-
diction for LED light sources. In addition, the prediction uncertain-
ties of the PF approach can be lowered by increasing the
measurement time. The robustness study on the proposed PF
method indicates that the prediction accuracy and uncertainties
are related to the initialization of the parameters. This is a limita-
tion of proposed PF approach when it is applied to qualify new
products. To guarantee the advantages of the PF method, a
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reasonable initialization process for the parameters based on his-
torical databases (for used products) or calibration testing (for
new products) is needed.

The future research directions of this research can be summa-
rized as follows. Firstly, the design of an effective calibration test
for the proposed PF approach with the aim of getting accurate
parameter initialization and minimizing the test time will be stud-
ied for new LED light sources without historical information on the
degradation rate and measurement noise. Secondly, a method for
online RUL prediction by integrating the proposed recursive PF
approach with in-situ monitoring will be developed to qualify
LED light sources, with the goal of reducing the measurement
errors from the off-line data collection process and increasing pre-
diction accuracy. Thirdly, a system-level prognostics and health
management expert system based on the sequential data-processing
function of PF approach will be designed for LED lighting systems
(e.g., street lighting, indoor lighting) to achieve real-time anomaly
detection, RUL prediction, and reliability assessment.
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